

OGSR: A Low Complexity Galileo Software Receiver using Orthogonal Data and Pilot Channels

By Ali Albu-Rghaif

College of Engineering, University of Diyala, Iraq Applied Computing Department, University of Buckingham, UK

Outline

Transmission Scheme for the Galileo-OS Signal

Reference Methods

- Time-Domain Implementation
- Frequency-Domain Implementation

Our OGSR Method

- Experimental setup
- The OGSR Analysis
- The OGSR Results
- Conclusions

2 of 18

MAY 26-27, 2015 BIRMINGHAM, UK CCIT INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND INFORMATION TECHNOLOGY

Transmission Scheme for the Galileo-OS Signal

3 of 18

CCIT INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND INFORMATION TECHNOLOGY

MAY 28-27, 2015 BIRMINGHAM, UK CCIT INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND INFORMATION TECHNOLOGY

Our OGSR Method

7 of 18

MAY 26-27, 2015 CCIT INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND INFORMATION TECHNOLOGY

BIRMINGHAM, UK

The Experimental Setup

Analysis Main peak to side peak and noise ratio

1AY 26-27, 2015 BIRMINGHAM, UK

CCIT INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND INFORMATION TECHNOLOGY

Analysis False Alarm Probability vs. Threshold

10 of 18

CCIT INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND INFORMATION TECHNOLOGY

Analysis Highest correlation peak outputs

> OGSR correlation is around 2.7 > the DC correlation

≻ But

The noise level in our OGSR is 28% higher than in the DC method

Analysis **Doppler frequency bin steps correlation DC Method** - O X Variables - DC_IQSmaxpeak ▲ ? ⊙ ≍ Z, 🔒 h i 5 VARIABLE de O Reuse Figure DC_IQSmaxpeak(8,:)

semilogy

loglog

	DC_IQSmaxp	oeak X							_								
H	17x65472 dou	ble															
	16361	16362	16363	16364	16365	16366	16367	16368	16369	16370	16371	16372	16373	16374	16375	16376	16377
1	1.5511e+06	2.3434e+05	5.6335e+05	2.4542e+05	8.1226e+05	4.0769e+05	8.1876e+05	4.2716e+05	1.5639e+05	2.6467e+05	8.3922e+05	4.0858e+05	4.1380e+05	4.2112e+05	2.4923e+05	3.3475e+05	7.9756e+0 🔺
2	1.6601e+05	2.1283e+05	2.7943e+04	6.0569e+04	2.0805e+05	3.1974e+05	2.3011e+05	2.1169e+05	2.6198e+05	1.1741e+06	4.5842e+05	6.3599e+05	1.5253e+06	8.8168e+05	1.1037e+06	1.2821e+06	6.1163e+0
3	1.4705e+05	4.6454e+05	2.8711e+05	6.6635e+05	9.7356e+05	2.2796e+05	8.7831e+05	5.3629e+05	4.6406e+05	5.8471e+05	9.5847e+05	8.3668e+04	3.5483e+05	6.0259e+05	2.0883e+05	1.5065e+05	1.5793e+0
4	5.1177e+04	2.0795e+05	2.8210e+05	5.0235e+05	1.2876e+05	2.7742e+05	4.9317e+05	4.3155e+05	1.1503e+06	6.8270e+05	7.7407e+05	7.4451e+05	6.9081e+05	5.4388e+05	2.9904e+05	1.7421e+05	2.5137e+0
5	4.8965e+05	6.5118e+05	2.4404e+05	1.5323e+06	9.0615e+04	1.0368e+05	2.2201e+05	2.9574e+05	3.6038e+05	8.6705e+05	1.5932e+06	1.5319e+06	5.9991e+05	2.9603e+05	4.4995e+05	6.6113e+05	2.2426e+0
6	2.3288e+05	3.9226e+05	5.5801e+05	7.3918e+05	3.8197e+05	5.6634e+05	4.4019e+05	1.5952e+05	2.6531e+05	2.6068e+05	5.8514e+05	2.6869e+05	3.8480e+05	5.0496e+04	4.3134e+05	1.8597e+05	4.7532e+0
7	1.0901e+06	3.5170e+05	1.5245e+05	3.9664e+05	1.1044e+06	7.4939e+05	3.6814e+05	8.2370e+05	2.4154e+05	8.8953e+05	2.0251e+05	1.3054e+05	9.3097e+04	1.5137e+05	1.7856e+05	4.0357e+05	1.0332e+0
8	3.5753e+06	1.8160e+06	2.8830e+05	1.2980e+06	9.7667e+05	3.1195e+06	8.7165e+06	6.9280e+06	1.8196e+07	2.4898e+06	6.6665e+06	7.7490e+05	8.4669e+05	4.8287e+05	2.2099e+05	4.5177e+06	2.7716e+0
9	2.1663e+06	1.3559e+06	5.8611e+05	7.6509e+05	3.0408e+05	4.9171e+05	1.9368e+06	2.5009e+06	3.5245e+06	2.5947e+06	1.5808e+06	1.1968e+06	2.0951e+05	1.5918e+05	1.5931e+05	1.6381e+06	6.1356e+0
10	5.7049e+05	2.9959e+05	5.7955e+05	5.7855e+05	9.4491e+05	1.3046e+06	2.5055e+06	2.7394e+06	5.8098e+06	1.3541e+06	1.3460e+06	4.7889e+05	1.8244e+05	5.4641e+05	1.0354e+06	1.5372e+06	1.8777e+0
11	4.5645e+05	1.4960e+05	1.6647e+04	8.0305e+04	2.3164e+05	5.6723e+05	1.3051e+06	1.0750e+06	4.4441e+05	1.1196e+06	1.3988e+05	7.6855e+05	1.5032e+05	7.1706e+05	3.0826e+05	6.0469e+05	8.3795e+0
12	8.5860e+05	9.5254e+05	1.7862e+06	1.0132e+06	5.9582e+05	4.8853e+05	5.6801e+05	1.1653e+05	4.0284e+05	1.1013e+05	3.9140e+05	4.7704e+05	4.8380e+05	2.7399e+05	7.9618e+05	7.5974e+05	1.0236e+0
13	1.7261e+05	4.6263e+05	8.1898e+05	6.6325e+05	6.2436e+05	2.9084e+05	7.2804e+04	2.7830e+05	5.0443e+05	7.7987e+05	4.0035e+05	4.2523e+05	6.4642e+05	5.4047e+05	1.6501e+05	1.1433e+05	2.1724e+0
14	3.0516e+05	4.8778e+05	6.6875e+05	3.6633e+05	4.6983e+05	8.2786e+05	1.9339e+06	7.5975e+05	1.3940e+06	6.7311e+05	1.5814e+06	5.6159e+05	1.8070e+06	1.3325e+06	2.5376e+06	2.1021e+06	1.3754e+0
15	3.4304e+05	6.0341e+05	5.8010e+05	2.2447e+05	1.5331e+05	1.6950e+05	7.1446e+05	1.7007e+05	3.2991e+05	1.0511e+05	5.8229e+05	4.1362e+05	7.5706e+05	6.6967e+05	1.5452e+06	1.5585e+06	6.2385e+0
16	4.9040e+05	8.2927e+05	3.2537e+05	4.9871e+05	1.2910e+06	5.3501e+05	4.6473e+05	6.5225e+05	2.9243e+05	6.9283e+05	3.7058e+05	1.8556e+05	3.3231e+05	1.5382e+05	3.2675e+05	2.5576e+05	9.4259e+0
17	6.8407e+05	7.1844e+05	1.4559e+05	7.5321e+05	5.0583e+05	5.4817e+05	4.0628e+05	5.3062e+05	4.6774e+05	8.9534e+05	3.0361e+05	2.6380e+05	8.7273e+04	9.6132e+05	2.2211e+05	1.4786e+05	4.9556e+0
18	9																
	•	1	1		6	1	1	.1			1	1		1	1	1	4

12 of 18

....

plot

bar

area

histogram

semilogx PLOTE.

pie

PLOTS

MAY 26-27, 2015 **BIRMINGHAM, UK**

INTERNATIONAL CONFERENCE ON ADVANCES IN CCIT COMPUTING, COMMUNICATION AND INFORMATION TECHNOLOGY

.........

stairs

barh

comet

stem

New Figure

OPTION

THE UNIVERSITY OF

Analysis Doppler frequency bin steps correlation

Valia	ables - OG	SR_IQSmaxpe	ak						25.		-						
PL	OTS	VARIAB	LE	VIEW									HI S	<u> </u>		19¢1	0
OGS	SR_IQSmax	peak(8,:)	plot	bar	area	pie	histogram	semilogx	semilogy	loglog	comet	stem	stairs	barh	• O Reus	se Figure Figure	
	SELECTIC	DN						PLOTS: OGS	R_IQSmaxpeak(8	.:)					OPTI	ONS	
OG	SR_IQSma	xpeak 🛛															
17x6	5472 doub	ole															
1	6361	16362	16363	16364	16365	16366	16367	16368	16369	16370	16371	16372	16373	16374	16375	16376	1637
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1.5	453e+07	8 6041e+06	3 3871 e+06	8 3564e+06	1 0032e+07	1 1129e+07	2 7157e+07	4 1999e+07	5.0855e+07	3.0674e+07	1 3697e+07	3.6405e+06	3 4020e+06	51449e+06	7 1339e+06	1 3669e+07	1 335
1.5	0	0.00412.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0)
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	j
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

13 of 18

IAY 26-27, 2015 BIRMINGHAM, UK

CCIT INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND INFORMATION TECHNOLOGY

THE UNIVERSITY OF

Result Performance

MAY 26-27, 2015 BIRMINGHAM, UK CCIT INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND INFORMATION TECHNOLOGY

Result Complexity

 >OGSR constructs the locally generated signal in Orthogonal format, therefore the computational complexity is
> about 49% < DC method

15 of 18

CCIT INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND INFORMATION TECHNOLOGY

BIRMINGHAM, UK

IAY 26-27, 2015

Result **Processing Time**

Monte Carlo simulations with 100 runs to calculate

the average processing time

Method	Average Processing Time
SC Method	6.6274 sec.
OGSR Method	<u>6.6306 sec.</u>
DC Method	10.1636 sec.

Conclusions

- Our OGSR forms the Data and the Pilot signals in an Orthogonal format
- OGSR method performs as good as DC method
 - i.e. is maintained the 3dB joining gain that achieved by exploiting the power in both data and pilot signals
- OGSR method saves whole correlation chain in comparison with:
 - Time-Domain implementation 4-Correlation Channels
 - Frequency-Domain implementation 2-Correlation Channels
- The outcomes are:
 - Less complex implementation (49%) less computationally expensive than the DC method
 - Faster acquisition process (35%) less time required than the DC method
- OGSR a good candidate for Smartphone's software receiver

Questions?

